SHORT COMMUNICATIONS 459

BBA 43203

The reactions of cytochrome c_1 with ligands

Cytochrome c_1 is very similar to cytochrome c in its spectrum, typical of an iron porphyrin coordinated by two strong field protein ligands, in what is usually called a closed crevice structure¹, and typical structurally, by having the haem group covalently bound to the protein through thioether bonds². These similarities suggest that cytochrome c_1 should react with cyanide in reactions similar to those of cytochrome c. However, it has been reported that cytochrome c_1 does not react at all with cyanide³.

The reactivity with cyanide of a preparation of cytochrome c_1 made from beef heart mitochondria by the procedure of Bomstein, Goldberger and Tisdale² was examined spectroscopically. Fig. I shows the Soret region of the spectrum of ferricytochrome c_1 , and the spectrum of the enzyme after standing 10 min in the presence of 0.1 M KCN, neutralized to pH 7.1. The formation of a complex is evidenced by a red shift of the Soret peak of about 6 m μ , similar to that observed in the analogous reaction of cytochrome c (ref. 4).

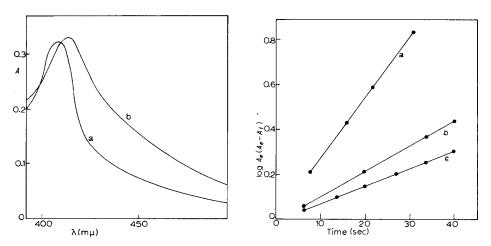


Fig. 1. Spectra of ferric cytochrome c_1 (a) and its cyanide complex (b) in the Soret region; 24°, pH 7.1, 0.1 M KCN.

Fig. 2. Kinetics of the reaction of ferricy tochrome c_1 with cyanide at pH 7.1, 24°, and various concentrations of the ligand. A_t : absorbance at time t; A_e : absorbance at equilibrium. Wavelength: 427 m μ . [KCN]: (a) 16.7·10⁻³ M, (b) 3.3·10⁻³ M, (c) 1.67·10⁻³ M.

The difference in the absorption is maximal at 427 m μ . At this wavelength, the rate of the reaction was measured at 24° and pH 7.1 (0.06 M phosphate buffer), using cyanide concentrations between 1.6 and 16 mM. Under these conditions, the reaction did not go to completion, but reached equilibrium in a few minutes. From the absorbances at equilibrium, $A_{\rm e}$, and those measured at different times, A_t , the values of $\log A_{\rm e}/A_{\rm e}-A_t$ were calculated, and found to depend linearly on the time (Fig. 2). The observed rate constants, $k_{\rm obs}$, estimated from the slopes of the lines in Fig. 2 increased linearly with increasing cyanide concentrations. For a ligand

binding reaction reaching equilibrium in excess of the ligand, the expression $k_{\text{obs}} = k_{\text{f}} \cdot [\text{KCN}] + k_{\text{b}}$ applies, with k_{f} and k_{b} representing the time formation and dissociation rate constants. Thus, a plot of k_{obs} versus [KCN] permits us to estimate k_{f} and k_{b} , from which K_{obs} , the equilibrium constant, may be calculated. The values obtained are presented in Table I, together with the values observed for the analogous reaction of ferricytochrome c (ref. 5). It can be observed that, under similar conditions, ferricytochrome c_{1} cyanide is formed distinctly faster than its cytochrome c analog, although the stability of the latter is 20 times larger.

TABLE I observed rate constants and equilibrium constants for the reactions of ferri cytochromes c and c_1 with cyanide, at 24° and pH 7.1 Data for cytochrome c estimated from ref. 5.

	$\begin{array}{c} h_{forward} \\ (M^{-1} \cdot sec^{-1}) \end{array}$	$k_{back} \ (sec^{-1})$	$K_{eq} \ (M^{-1})$
Cytochrome c_1	3.2	$1.4 \cdot 10^{-2} \\ 1.8 \cdot 10^{-5}$	2.3·10 ²
Cytochrome c	7.6·10 ⁻²		4.3·10 ³

Ferricytochrome c cyanide can be reduced by dithionite, yielding a reduced cyanide complex that decomposes readily. Ferricytochrome c_1 cyanide was also reducible with dithionite. The resulting spectrum (Fig. 3), compared to that of free ferrocytochrome c_1 , showed a small but distinct red shift, with the α and β bands appearing at 555 and 525 m μ , as in ferrocytochrome c cyanide. In contrast to the latter, however, ferrocytochrome c_1 cyanide was stable, and did not decompose for several hours. Another reduced complex, ferrocytochrome c_1 —CO (Fig. 3), was formed by bubbling CO through a solution of the reduced enzyme at pH 13. Its spectrum is very similar to that of ferrocytochrome c—CO (ref. 7). Upon neutralization it also proved to be very stable; after 24 h less than 10 % decomposition could be observed.

Thus, although spectroscopically similar to the complexes of reduced cytochrome c, those of reduced cytochrome c_1 decompose with extremely slow rates. It is of special interest to notice that, while the dissociation of the complex of ferric cytochrome c_1 is faster than that of ferricytochrome c_2 cyanide, the situation is inverted in the case of the reduced complexes. Since the rate of these decompositions appears

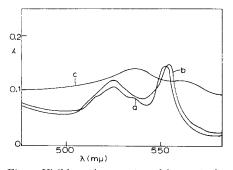


Fig. 3. Visible region spectra of ferrocytochrome c_1 (a) and its cyanide (b) and carbon monoxide (c) complexes, obtained as described in the text.

Biochim. Biophys. Acta, 162 (1968) 459-461

to be governed by conformation changes of the molecule⁶, while spectra of haem proteins arise from electronic transitions of the porphyrin, these results suggest that although cytochrome c and cytochrome c_1 may have very similar structures in the haem region, they differ widely in their conformations.

The reactions of ferric and ferrous cytochrome c_1 with ligands are similar to those of cytochrome c. The quantitative differences are probably an indication of the different strengths of their crevices.

Department of Biochemistry, Tel-Aviv University, Tel-Aviv (Israel)

ABEL SCHEJTER GIDEON BERKE

- I P. GEORGE AND R. L. J. LYSTER, Proc. Natl. Acad. Sci. U.S., 44 (1958) 1013.
- 2 R. Bomstein, R. Goldberger and H. Tisdale, Biochim. Biophys. Acta, 50 (1961) 527.
- 3 I. SEKUZU, Y. ORII AND K. OKUNUKI, J. Biochem. Tokyo, 48 (1960) 214.

- 4 C. L. TSOU, Biochem. J., 50 (1952) 493. 5 P. GEORGE AND C. L. TSOU, Biochem. J., 50 (1952) 440. 6 P. GEORGE AND A. SCHEJTER, J. Biol. Chem., 239 (1964) 1504.
- 7 E. BEN-GERSHOM, Biochem. J., 78 (1961) 218.

Received May 28th, 1968

Biochim. Biophys. Acta, 162 (1968) 459-461